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Viscoelastic behavior is advantageously displayed using the relaxation spectrum, because 
its distinct peaks correspond to processes centered at definite relaxation times. Quantita- 
tive characterization then becomes possible using parameters for strength, location, 
spread, and rate. of decay, in the mathematical functions representing the peaks. Use of 
symmetric bell-shaped functions that occur in statistical theory makes a practical 
method possible, for solving the generally ill-posed inverse problem of finding the relaxa- 
tion spectrum, using spreadsheet software. The starting data are observations of complex 
modulus from dynamic mechanical analysis (DMA). Time-temperature superposition 
allows the result to be displayed as a temperature sweep, at some reference time. From 
data in the literature, referred to a time of IOOOs, a poly(n-octyl methacrylate) fraction 
can be characterized with three peaks, at 5YC, -42°C and -56"C, and a commercial 
polystyrene with two peaks, at 122°C and 1OB"C. Published data for rubbery copolymers 
and their blends with isotactic polypropylene give spectra with one peak for the terminal 
zone, at 21°C to 35"C, depending on the material, when referred to time 1 s. For the 
immiscible blend an additional peak appears at 93"C, corresponding to phase separa- 
tion; from its location one can estimate 5OPa for the ratio of interfacial tension to 
droplet radius. Random errors in the DMA data degrade the precision of the method, so 
that typically a 5% noise level in the complex modulus would cause peaks separated by 
8°C to become merged. 

Keywordr: Relaxation spectrum; Dynamic mechanical analysis; Polymer blends 

*Presented at the 10th International Symposium on Polymer Analysis and Character- 
ization, (ISPAC-lo), University of Toronto, Canada, August 10- 13, 1997. 
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2 C.E. CHAFFEY 

INTRODUCTION 

Dynamic mechanical analysis (DMA) is a versatile technique for char- 
acterizing the behavior, over a range of temperature, of polymers and 
their blends. Its value can be enhanced by displaying its results as a 
relaxation spectrum H. To obtain H from the raw data of DMA, 
which are values of the complex modulus G*, one must invert the 
integral equation 

where w is angular frequency and 7 is relaxation time. Because Equa- 
tion (1) gives G*(w) as an expected value over the probability density 
H(T), it shows that relaxation processes at many time scales r add to 
the observed G* at any one frequency w. Thus the relaxation spectrum 
H(T) gives a direct measure of the strength of viscoelastic relaxation at 
each time scale T,  and a plot of H(r)  against r has peaks that show the 
regions where relaxation processes are concentrated. The peaks, and 
also the regions of roughly constant slope on a logarithmic plot of H, 
can be identified with the characteristic zones of viscoelastic behavior, 
such as the glassy zone, the glass transition, the rubbery plateau, and 
the terminal zone, in single-phase polymers and blends."] An addi- 
tional peak appears at long T,  due to phase separation, in immiscible, 
two-phase blends.12] These peaks in the single function H will be more 
distinct than the features seen in plots against w of the two components 
of G*, namely, inflections in G' and extrema in G". The contrast 
between DMA data from materials having good and poor qualities in 
applications, cited in their brochures by DMA instrument manufac- 
turers (for example, Rheometrics, TA Instruments), should also be 
clearer when the relaxation spectrum H i s  used. 

Because H at one r contributes to G* over all frequencies w, there 
can be many quite different functions H(T) that give almost the same 
G*(w) by Equation (1). The inverse problem of finding H(r)  from 
G*(w) is thus ill-po~ed.'~] Traditionally, H is calculated by an approxi- 
mate method such as those of Williams and Ferry1'] or T~choegl ,~~]  
which work well because H(T) is a slowly varying function of 7. 

Numerically calculated spectra have further been decomposed into 
separate peaks, the areas of which correspond to the strengths of 
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DYNAMIC MECHANICAL ANALYSIS 3 

different viscoelastic processes.['] More recent methods for computing 
H ,  such as the maximum entropy method,t41 consider how the errors in 
G*(w) are distributed. A new adaptive-robust minimax algorithm 
makes no assumption of error bounds, and also takes into account 
non-Gaussian outliers.['] High accuracy is obtained from regulariza- 
tion with quadratic programming, used with G' data at low w and G N  
data at high w.I6] Like the early approximations, these methods too 
give numerical values of H(r)  at discrete values of 7 that can be dis- 
played graphically, but which do not yield a limited set of parameters 
suitable for characterization. 

A different strategy is to represent H(T) analytically by a slowly 
varying function having a small number of parameters. Early examples 
are the box and wedge spectra."] More recently, the BSW spectrum of 
Baumgartel, Schausberger, and Winter, descending and ascending 
wedges, has been introducedr7] for monodisperse amorphous polymers; 
the mixing rules for bidisperse systems have also been determined.[81 
Because the corners on the graphs of these functions are physically 
unrealistic and absent from numerically calculated spectra, smoother 
functions seem to be advantageou~.[~I The present research will study 
how results of DMA can be displayed by a relaxation spectrum H that 
consists of a few symmetric bell-shaped peaks. In practice, DMA 
experiments are quite often carried out as temperature sweeps; accord- 
ingly, the calculated spectra are shown using temperature as indepen- 
dent variable. This has the advantage of characterizing the relaxations 
by the temperatures at which they occur. Finally, the possible errors in 
this method are discussed. 

THEORY 

In general, a spectrum is found by observing the response of a sample 
to an excitation, which is scanned over a range of an independent 
variable x such as frequency or temperature. Typically the response 
has a small baseline magnitude except at special values of the scanned 
variable, at which the response rises to give peaks on the spectrum. 
Because random fluctuations spread the peaks out from being per- 
fectly sharp and narrow, the response is appropriately modeled, as a 
function of the scanned variable, by one of the probability densities 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



4 C.E. CHAFFEY 

arising in statistical theory. Two normalized symmetric density func- 
tions, which are described and tabulated in standard statistics textsrg1 
are used here. 

The Gaussian or normal probability density function[31 is 

1 
n(x; p, c) = ~ 

(271) % 

where x is the random variable; the mean p locates the center of the 
peak on the x scale, and the standard deviation c measures the spread 
of the peak. This function is also useful for modeling secondary (p) 
relaxations at temperatures below the glass transition,"'] and stress 
relaxation of the amorphous and crystalline zones of solid isotactic 
polypropylene.["] The second density function used is the Student t 
density (or Pearson Type VII distribution) defined in terms of the 
standardized random variable t = (x - p)/c by 

where v (the number of degrees of freedom) indicates the rate of decay 
of the functionflt; v) as x differs more from p. When v is smallflt; v) 
drops off gradually, but for large v, f (t; v) decreases abruptly. As 
v + CQ (effectively for v 2 lOO),f(t; v) +. n(t; 0,l). It is this quality of 
gradual decay that makes the Student t density so important in its 
usual statistical application. 

The variable x was identified as the logarithmic relaxation time: 
x = log 7 (T in seconds; log 3 log,,). A relaxation spectrum H(T) con- 
taining N peaks was expressed by 

where 
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DYNAMIC MECHANICAL ANALYSIS 5 

or 

Gj (with units of modulus) being the strength or intensity of the relaxa- 
tion for peakj. In this study, the number N of peaks was between 1 
and 3. Spreadsheet software was then employed to calculate log G' and 
log G " as functions of log w for given parameters Gj, pi, uj and vj, with 
the trapezoidal rule used for the integration. 

In the spreadsheet (Quattro Pro for Windows 5.0, Borland Interna- 
tional Inc., 1993), the top 9 rows were reserved for general purposes, 
such as for constants, parameters and headings. Rows 10-200 were 
used for calculations; in them column A held 191 values of logw or 
-log T running from -4.0 to 15.0 in steps of 0.1 : 

1 0 g W k  = - logTk = -4.0 + O.lk, for k = 0 to 190. 

4.0+0.1 k The row index was k+ 10. Column B held wk= 1 / T k =  10- 
J columns were used for H](TR), with their sum H(T~)  in column H. To 
calculate GI, the real part of Equation (1) 

was integrated by the trapezoidal rule with 190 panels. The sum of the 
terms except the first and last was given by 

The cell at column K and row k + 10 held K k  as a formula; its code, for 
k=O for example, was @SUM(H%ll..H$199/(1 +B$ll..B$199^2/ 
B10-2)). The code makes use of the two interpretations of column B, 
Wk and 1/Tk. Copying the formula from row 10, to rows 11 through 
200, automatically changed the reference from B10 to the correct row 
index. The trapezoidal integration was completed as 
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6 C.E. CHAFFEY 

coded as OS*(H$10/(1+ (B$lO/B10)^2) + 2*K10 + H$200/(1+ (B$200/ 
B10)^2))*C$5. Cell C5 held 0.1 In 10, the step size of 0.1 multiplied by 
In 10, to convert loglo to In. 

The calculation of the loss modulus G ’ I  was analogous: 

@SUM(H$l 1 . .H$199/(B 10/B$ll ..B$199 + B$11 ..B$199/B10)), 

0.5*(H$10/(B10/B$10 + B$lO/BlO) + 2*L10 + H$200/(BlO/B$200+ 
B$200/B 1 O))*C$5. 

With calculated and observed log GI and log GN displayed in a graph 
window, the parameters Gj, pj, uj and uj were varied until the calculated 
and observed values matched fairly closely. This procedure could be 
started with Gj = G”, pj = -log w of peak j ,  and oj = 1, uj = 30. Increas- 
ing pj moved the calculated maxima in G’ and GN to lower w; increas- 
ing Gj raised G‘ and G”; and increasing oj or decreasing uj made the 
changes in GI and GI’ more gradual. Agreement between calculated 
and observed log GI and log G” was measured by the percentage root- 
mean-square (rms) deviations d‘ and d” defined by 

x100%, (4) 1 C(log G’(observed) - log G’(calculated))2 
d ’ =  [ 

ndata 

and analogously for d” ,  summation being over all ndata data points. 
For each peak in turn, the parameters Gj, pj, uj and uj were finally 
adjusted systematically to reduce d’ and d ” ,  until about two significant 
figures in the parameters were determined. However, peak locations 
were not reported as pj, but as the antilogarithm lop with units of time, 
which placed the peaks on the actual time scale. 

When time-temperature superposition“] is valid, temperature T can 
be used instead of relaxation time r as the independent variable. The 
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DYNAMIC MECHANICAL ANALYSIS I 

relaxation spectrum H can accordingly be displayed as a function of T. 
Superposition requires that H(r,T) = H(r/aT, To), where r/aT is the 
temperature-shifted relaxation time, with aT being the shift factor for 
the reference temperature TO. Now let T be the temperature at which 
the relaxation spectrum has this same value at a reference relaxation 
time ro: H(ro, r )  = H(r/aT, To). To obtain an explicit formula for T 
from this implicit equation, an expression for aT is needed. One which 
is widely used is the Williams-Landel-Ferry (WLF) equation 

-c1(T- To) log aT = 
~2 + T -  To ’ 

with the WLF parameters c1 and c2. Setting the temperature-shifted 
relaxation time r/aT equal to ro/aT with variable T gives 

which can be solved for T to yield 

For systems that are more fluid, at temperatures much above the glass 
transition, uT is represented well by the Arrhenius equation 

where E is the apparent activation energy, and R is the gas constant, 
8.3145 JK-’ mol-’. Analogously to the derivation of Equation (5 ) ,  
equating r/aT to rO/aT and solving for variable T gives 

In Equations (5) and (6), c1 > 0, c2 > 0 and E > 0; these inequalities 
cause a change to a shorter T~ to result in a higher calculated T. Thus 
choosing a shorter reference time will displace the features of the 
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8 C.E. CHAFFEY 

relaxation spectrum to higher temperatures; their shape will also be 
altered. To locate the relaxation peaks on the temperature scale, 
temperatures Tp are introduced, defined by Equations (5) or (6) with 
log p substituted for log ( 7 1 ~ ~ ) .  

RESULTS 

As examples, these methods have been applied to DMA data in the 
literature for some representative systems. 

System 1. Poly(n-octyl Methacrylate)"] 

This data set extends over 15.5 decades of temperature-shifted time. A 
satisfactory fit was obtained from a relaxation spectrum H(T) having 
three Student t peaks, Equation (3), with parameters given in Table I. 
On the logarithmic plot of G', GI' against WUT (Figure l(a)), 
the curves of the recovered G', G" agree with the data best near the 
extrema in G ". Transformation to temperature as independent vari- 
able by Equation (5) shows the dependence of the relaxation pro- 
cesses on T (Figure l(b)), at the arbitrarily chosen reference relaxation 
time TO = 1000 s. Here the WLF parameters are To = 100°C, c1 = 7.60, 
c2 = 227.3"C."] After this nonlinear transformation the maxima in H 
are located by Tp (Table I), and the peaks are no longer symmetric. 
Values of H,  calculated by the Williams-Ferry method,"] plotted as +, 
x on Fig. lb, agree closely with the middle Student t peak but diverge 

TABLE I Parameters in Equations (2) and (3), and rms deviations for five polymer 
and blend systems 

System Strength G Location lop ( s )  Location Spread u Decay u d', d" (%) 
Tu, P3 

1 1.9 x 1 O5 dyn/cm2 
1.4 x lo9 dyn/cm2 
5.5 x 109dyn/cm2 

2 6.5 lo5 
1.0 x 106 

3 3.9 104pa 
6.5 x 104pa 
1.8 x 107pa 

4 3.3 x 104pa 

5.4 x 104pa 
5 43 Pa 

10 
2.5 x lo-'' 

0.63 
3.2 x 10- l~  

3.2 x 
8 x 

3.2 x 
1 o - ~  

6.3 x I O - ~  
0.1 

4 1 0 - ~  

55 
-42 
-56 
122 
108 
34 

-32 
-143 

29 
93 
21 

1 .o 4 5.5, 7.8 
1 .O 9 
0.5 30 
1 .O -, 2.6 
0.5 
0.6 2.3,3.2 
1 .o 
1.7 
0.55 5.4, 2.9 
1.2 2.3, 1.5 
0.6 
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> 
a 

170 C 

3 4  
- 4 - 2  0 2 4 6 8 1 0 1 2  

log frequency 

9 

60 4 0  -20 0 20 40 60 80 100 120 140 

temperature deg C 

FIGURE 1 Data for system 1, a poly(n-octyl methacrylate) fraction."] (a) Double 
logarithmic plot of complex modulus G* against temperature-shifted frequency woT, 
A, observed G'; 0, observed G"; curves, G' and G" recovered from the relaxation 
spectrum H(T) with symmetric peaks. (b) H plotted against temperature T for a 
reference relaxation time 70 = 1OOOs: lower curves, individual peaks; upper curve, their 
summation giving H; + and x , points of the relaxation spectrum calculated in the 
original reference from G' and G ", respectively. 
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10 C.E. CHAFFEY 

at the ends of their range. If the reference time is shortened to TO= 
100 s, the maxima of the three Student t peaks are displaced upwards; 
for example, TP1 is shifted from 55°C to 74°C. 

System 2. Commercial Polystyrene 

One of the data sets of Elster and HonerkampL4] (their Figure 6) is a 
master curve of GI1 for a commercial polystyrene from measurements 
at 160°C to 280°C (G' is not reportedL4I). On Figure 2(a) these data are 
shown together with the curves of G' and G "  recovered from a relaxa- 
tion spectrum H(T) having two Gaussian peaks, Equation (3). The 
peaks are characterized in Table I; the units of G are those of the 
reference.[41 To change to T as independent variable (Figure 2(b)) by 
Equation (5), WLF parameters were calculated from tabulated values 
at the glass transition, using Ferry's Table 11-11 and Equations (24) 
and (25) of section B, chapter 1 l."] At To = 160"C, inferred from the 
data,I4]cl = 5.877, c2 = 107.5"C; again T~ = 1000 s. Elster and Honer- 
kamp use the maximum entropy method to estimate H(T). Their values 

7, 

160 C 

-4 -3 -2 -1 0 1 2 3 4 

log frequency 

FIGURE 2(a) 
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DYNAMIC MECHANICAL ANALYSIS 11 

6.0 

5.5 
I 
- E? 
5.0 

4.5 

4.0 

100 110 120 130 140 150 180 
tempemture deg C 

FIGURE 2(b) 

FIGURE 2 Data for system 2, a commercial polystyrene,[41 plotted as in Figure 1.  

of H ,  shown without the error estimates as x on Fig. 2(b), fluctuate 
more than the H of the present model, in which only two relaxation 
processes suffice to reproduce G N  with the low d" of 2.6%. 

System 3. Rubbery Copolymer 

Yamaguchi et al. have recently published an extensive rheological 
study['21 of polymers and their blends. Those authors' Figure 1 gives 
master curves of G' and G", reduced to 170°C, for a rubbery copoly- 
mer of 43 mol % ethylene and 57% 1-hexene. They are replotted here 
in Figure 3(a), together with recovered values calculated from a relaxa- 
tion spectrum H(T) having three Gaussian peaks with parameters 
given in Table I. Equation (6)  with E=40.5kJ/mol['*] is used to 
change the independent variable to T, against which H is plotted in 
Figure 3(b). The reference relaxation time T~ = 1 s. As T increases from 
about -65"C, H has a broad box-like region extending to 70°C. The 
method proposed here decomposes this feature into two bell-shaped 
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12 C.E. CHAFFEY 

6 ,  

5 

4 
m a 

b 
m 

! 3 

0 - 
2 

1 

0 

l a  

-2 -1 0 1 2  3 4 5 6 7 
log frequency 

copolymer 

-150 -100 -50 0 50 100 150 200 250 
temperature deg C 

FIGURE 3 
reference relaxation time T~ = 1 s. 

Data for system 3, a rubbery plotted as in Figure 1 ,  for a 
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DYNAMIC MECHANICAL ANALYSIS 13 

peaks, which cannot be resolved by inspection (Figure 3(b)). In order 
of increasing T or T, they may be identified with the rubbery plateau 
and the terminal zone, respectively. The present method also provides 
numerical values for both the strength G, and the location lop on the 
time scale, of these two viscoelastic behaviors (Table I). 

System 4. Miscible Blend of Polypropylene and 
Rubbery Copolymer 

Figures 2 and 4 of Yamaguchi et u1.“*] report G*(w) and H(T) data for 
two blends. System 4, which is 75% by mass isotactic polypropylene 
(i-PP) and 25% the rubbery copolymer of system 3, a miscible blend, 
shows the usual terminal zone in which log G‘ has slope 2 at low WUT 

(Figure 4(a)). Over the range of frequency for which measurements 
were possible, G’ and G ”  are adequately recovered from a single 
Gaussian relaxation (Figure 4(b); Table I). The calculated crossover of 
G’ and G ”  (Figure 4(a)) is displaced down in frequency compared to 
the observations. Agreement would be improved if a second peak in H 

-2 -1 0 1 2  3 4 5 6 7 
log fiequency 

FIGURE4(a) 
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14 C.E. CHAFFEY 

5 

-150 -100 -50 0 50 100 150 200 250 
temperature deg C 

FIGURE 4(b) 

FIGURE 4 Data for miscible blend 4 of isotactic polypropylene with rubbery copo- 
lymer)’*] plotted as in Figure 3. 

was added at low temperatures, but since it would lie outside the range 
of the observations its parameters would not be meaningful. 

System 5. Two-phase Blend of Polypropylene and 
Rubbery Copolymer 

A blend of 75% by mass 1-PP, and 25% copolymer of 70mol% ethy- 
lene and 30% l-hexene, separates into two phases. The plot of log G’ 
against logwar has a slope greater than 2 at low (Figure 5(a)). 
Two Gaussian peaks are required in the relaxation spectrum H (Figure 
5(b); Table I). The one at larger 7 or T, due to phase separation, occurs 
at a relaxation time 10L”=O.l s. Substitution of this value into Equa- 
tion (6) of Gramespacher and MeissnerL2] yields a ratio of interfacial 
tension to droplet radius of 50Pa (given by 2mNm-’/40pm, for 
example). A comparable relaxation at high temperature, attributable 
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l a  

-2 -1 0 1 2  3 4 5 6 7 
log frequency 

b 

-150 -100 Jo 0 50 loo 150 200 250 
tampsreturedegC 

FIGURE 5 Data for two-phase blend 5 of isotactic polypropylene with rubbery 
copolymer,(*21 plotted as in Figure 3. 
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16 C.E. CHAFFEY 

to an interface between two phases, has been identified in a series of 
polyurethane blends.[131 For the blends 4 and 5 here, Equation (6)  was 
used for T, with E=40.2 kJ/mol[121 and ro= 1 s. The values of H 
calculated using the Tschoegl equations by Yamaguchi et aZ.,r121 shown 
as +, x on Figures 4(b) and 5(b), indicate slightly broader relaxa- 
tions than the Gaussian peaks. 

For these systems, the precision of recovery of log G’ and log G ”, as 
measured by d’ and d” ,  Equation (4), is within 3.2%, with two excep- 
tions. The relaxations in system 1, which extend over wider ranges in 
frequency, need the additional parameter vj in the Student t function, 
Equation (3), to attain 7.8% precision. For system 4, the H with just 
one peak also gives reduced precision in log G’. Figures l(b), 2(b), 3(b) 
and 5(b) show that with multiple peaks, only one tail of each peak 
contributes significantly to H, so that the tail that is not significant can 
be taken as symmetric to the significant tail. In general, these relaxation 
spectra H built from bell-shaped peaks, symmetric in the frequency 
domain, represent the viscoelastic behavior with good precision. 

DISCUSSION 

Some test calculations were done to learn about possible errors in 
characterizing relaxations by the present method. The following proce- 
dure examined the small difference in complex moduli G*(w) from a 
spectrum H(T) having two sharp peaks close together, and from one 
having a single broader relaxation. For the former H ,  a line spectrum 
was used. It was from two parallel Maxwell elements with equal 
moduli iG, and with relaxation times ar, r/a, where Q was a predeter- 
mined multiplier, so that 

G*(w) = iG[icrwT/(l + iawr) + iw(r/a)/(l + iwr/a)]. 

This was modeled by a single Gaussian peak, Equation (2), with mod- 
ulus G and location loc” = r. Its spread D was then determined so as to 
minimize (d’ + d”)/2, Equation (4). Finally, the temperature depen- 
dence and T~ were chosen to illustrate the result; Qr was selected to 
give T= 108°C when substituted in Equation (9, and then a tempera- 
ture separation AT was calculated as the difference between the T 
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corresponding to r /a and 108°C. Figure 6 is a plot of a relative stan- 
dard deviation (d' + d")/2G against AT. In practice, random noise will 
contribute to d' and d" when actual data are analyzed. It is expected 
that the ordinate of Figure 6 also indicates the level of noise, for which 
it is impossible to resolve relaxations having temperatures Tp closer 
than the AT plotted on the abscissa. For example, one would make 
the error of failing to distinguish two peaks that are 8°C apart when 
the relative standard deviation is greater than 5 % ,  for the conditions 
of system 2. Similar calculations show that at higher temperatures the 
minimum separation between just resolvable relaxations increases. 
Alternatively, at the same noise level, the analysis might erroneously 
split a single broad relaxation into two narrow ones. 

Errors will also be caused by imperfect time-temperature superposi- 
tion. The resulting scatter in the master curves of G' and G" will 
degrade the calculated H like random noise. Lack of precision in 
the shift factor aT also affects the peaks, especially their locations Tp. 

0 1 2  3 4 5 6 7 8 9 10 
AT, deg C 

FIGURE 6 Precision in G' data, expressed as standard deviation relative to the 
glassy modulus, needed to resolve a peak at a temperature higher by AT from one at 
108"C, for the conditions of Figure 2. 
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Thus with Equation (9, a unit increase in the WLF parameter cl or an 
8°C decrease in c2 shifts the peaks upwards in T by 4°C. 

For the systems analyzed here, the master curves had minimal scat- 
ter, indicating low noise and good superposition. Since the relaxation 
peaks (Table I) are widely separated in T or temperature T, and the 
deviations d’, d” are small, it does not appear that any peaks have 
been either separated or merged incorrectly. 

CONCLUSIONS 

The complex modulus G* of a viscoelastic polymer or blend, as mea- 
sured by dynamic mechanical analysis, can be represented well by a 
relaxation spectrum H having a few symmetric, bell-shaped peaks. 
Two or three such peaks are enough to span the range of relaxation 
times or temperatures from the glass transition to the terminal zone, 
for the systems from the literature studied here. The Gaussian or 
normal density function, multiplied by a strength parameter G, can 
describe the shape of a peak over a moderately wide range of relaxa- 
tion time; its mean p and standard deviation CT are quantitative mea- 
sures of the location and spread of the relaxation. When the data have 
a wider range of relaxation time, the Student t density function is 
useful since it has an additional parameter v indicating the decay of 
the peak away from its maximum. The method yields numerical values 
for these parameters which thus can characterize the polymer visco- 
elasticity at a particular temperature To. Transformation to tempera- 
ture T as independent variable, possible because of time-temperature 
superposition, allows the spectrum to be displayed as a temperature 
sweep, with relaxations assigned to characteristic temperatures Tp, for 
a reference time ro. 

Random noise in the measured complex modulus G* makes the 
peaks in H appear lower and wider, and causes errors in distinguishing 
two narrow nearby relaxations from a single broader one. In a typical 
case, a noise level of 5% in relative standard deviation would cause 
two relaxations separated by 8°C in temperature not to be resolved. 

The method is straightforward to implement using spreadsheet soft- 
ware, and it should enhance the ability to characterize polymer materi- 
als quantitatively using DMA. 
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